

IV Semester B.C.A. Examination, September/October 2023 (CBCS) (Repeaters) MATHEMATICS

Paper - IV: Operation Research

Time: 3 Hours

Max. Marks: 100

Instruction: Answer all the Sections.

SECTION - A

I. Answer any ten of the following:

 $(10 \times 2 = 20)$

- 1) Define operation research.
- 2) Mention some of the applications of operation research.
- 3) What is meant by optimal solution?
- 4) Explain the steps involved in transportation problem.
- 5) Define degenerate basic feasible solution in transportation problem.
- 6) What are the different methods of solving assignment problems?
- 7) Define expected time in PERT. Write its mathematical formula.
- 8) Explain Fulkerson's rule.
- 9) Explain the rule to determine saddle point.
- 10) Define maximin minimax principle.
- 11) Define independent float and free float of an activity.
- 12) What is pay-off matrix?

SECTION - B

II. Answer any four of the following:

 $(4 \times 10 = 40)$

13) a) Explain the phases of operation research.

5

b) A toy company manufactures two types of dolls a basic version doll A and a deluxe version doll B. Each doll of type B takes twice as long to produce as one of type A and the company would have time to make a maximum of 2000 per day. The supply of plastic is sufficient to product 1500 dolls per day. The deluxe version requires a fancy dress of which there are only 600 per day available. If the company makes a profit of Rs. 3 and Rs. 5 per doll respectively on doll A and doll B. Formulate this as an LPP.

14) a) What are the main features of an LPP in standard form?

4

b) Solve the following LPP by graphical method:

6

Maximize
$$z = 2x + 3y$$

Subject to
$$x + 2y \le 10$$

$$x + y \le 6$$

$$x \le 4$$

$$x, y \ge 0$$
.

- 15) Obtain initial basic feasible solution for the following transportation problem using
 - a) North-West Corner Method.

5

b) Matrix-Minima Method.

		Supply			
	1	2	1	4	30
From	3	3	2	1	50
WATER	4	2	5	9	20
Demand	20	40	30	10	ollhises

- 16) a) Explain Hungarian method for solving assignment problem.
- 5
- b) Determine an initial basic feasible solution to the following transportation problem using VAM method.

5

Destination

		1	2	3	4	5	Supply
ø	A	2	11	10	3	7	4
T	В	1	4	7	2	soded	8
So	C	3	9	4	8	12	9
De	emand	3	3	4	5	6	estalah a h

17) a) Explain project evaluation and review techniques.

5

b) Draw the network for the project whose activity and their precedence relationships are given below.

5

Activity	P	Q	R	S	Т	U
Predecessor	-	_	_	P, Q	P, R	Q, R

- 18) Write short notes on:
 - a) Strategies used in game theory.

5

b) Maximin - Minimax principle.

5

SECTION - C

III. Answer any four of the following:

 $(4 \times 10 = 40)$

19) Solve by simplex method.

10

Maximize $z = 3x_1 + 2x_2$

Subject to $x_1 + x_2 \le 4$

$$X_1 - X_2 \le 2$$

$$x_1, x_2 \ge 0.$$

20) a) Solve the following transportation problem by MODI method.

E

y optimain	1	2	3	4	Supply
T-ped	21	16	25	13	11
1	17	18	14	23	13
000	32	27	18	41	19
Demand	6	10	12	15	Injutical I

b) Write the steps to find initial basic feasible solution by matrix minima method.

5

21) Obtain optimum basic feasible solution to the transportation problem.

10

	600	То		Available
	7	3	2	2
From	2	1	3	3
	3	4	6	5
Demand	4	1	5	10

22) a) Mention the types of assignment problem. Describe the methods of an assignment problem.

5

b) Solve the assignment problem given below:

5

	A	В	C	D
1	1	4	6	3
11	9	7	10	9
III	4	5	11	7
IV	8	7	8	5
				-

23) Solve the following game, use dominance method to reduce the matrix, write the strategies adopted by each player and value of game.

10

01.97 8 2X	Υ.	Y.	Y ₃	Υ,	Y
21 21 - 2)	B	B,	B ₃	B ₄	B ₅
X_1 A_1	4	4	2	-4	-6
X_2 A_2	8	6	8	-4	0
$\begin{array}{ccc} X_1 & A_1 \\ X_2 & A_2 \\ X_3 & A_3 \end{array}$	10	2	4	10	12

24) a) Differentiate PERT and CPM.

4

b) Calculate the earliest start, earliest finish, least start, least finish of each activity of the project given below:

6

Activity	1-2	1-3	2-4	2-5	3 – 4	4-5
Duration (in days)	8	4	10	2	5	3

