

IV Semester B.Sc. Examination, September/October 2023 (CBCS) (Repeaters) (2015-16 Onwards) MATHEMATICS

Mathematics - IV

Time: 3 Hours

Max. Marks: 70

Instruction: Answer all Parts.

PART - A

I. Answer any five questions.

 $5 \times 2 = 10$

- 1) a) Define normal subgroup of a group.
 - b) If f: G → G' is a homomorphism, then prove that f(e) = e', where e and e' are the identity elements of G and G' respectively.
 - c) Calculate a_0 in the Fourier series of $f(x) = e^x$ in $(-\pi, \pi)$.
 - d) State Taylor's theorem for a functions of 2 variables.
 - e) Find L $[t^3 4t^2]$.
 - f) Find $L^{-1} \left[\frac{S-1}{(S-1)^2 + 9} \right]$.
 - g) Find particular integral of $(D^2 + 4D + 4)y = e^{2x}$.
 - h) Verify whether $(1 x^2) y'' 3xy' y = 0$ is exact.

PART - B

II. Answer one full question.

 $(1 \times 15 = 15)$

- 2) a) Prove that a subgroup H of a group G is normal subgroup of G iff $gHg^{-1} = H$, $\forall g \in G$.
 - b) Prove that the centre of a group G is a normal subgroup of G.
 - c) If $f: G \rightarrow G'$ is a homomorphism, then prove that f(G) is a subgroup of G'.

OR

- 3) a) Prove that the product of any two normal subgroups of a group is again a normal subgroup.
 - b) State and prove Cayley's theorem.
 - c) State and prove fundamental theorem of homomorphism.

PART - C

III. Answer two full questions.

(2×15=30)

- 4) a) Obtain the Fourier series of $f(x) = x^2$ in $(-\pi, \pi)$.
 - b) Obtain half range cosine series of $f(x) = \sin x$, $0 < x < \pi$.
 - c) Expand $x^2y + 3y 2$ in powers of x and y by Taylor's series upto 2^{nd} degree terms.

OR

- 5) a) Find the extreme values of the function f(x) = xy(1 x y).
 - b) Expand $f(x) = (x 1)^2$ in 0 < x < 1 in terms of half-range sine series.
 - c) Find the maximum and minimum distances of the point (1, 2, 3) from the sphere $x^2 + y^2 + z^2 = 56$ using Lagrange's method.
- 6) a) Find L [et sin 2t] and L [t sin t].
 - b) Evaluate
 - i) $L[t^3 + e^{2t} + \cos 2t]$
 - ii) L [cos2 t].
 - c) Find $L^{-1} \left[\frac{1}{(S+2)(S+4)} \right]$.

- 7) a) Find managed among a long a long and H quor
 - i) $L[t^3 e^{-3t}]$
 - ii) L $[e^{-t}(2\cos 5t 3\sin 5t)]$.
 - b) Find L [cos 2t * sin 3t].
 - c) Find $L^{-1} \left[\frac{S+3}{(S+3)^2+36} \right]$.

PART - D

IV. Answer one full question.

 $(1 \times 15 = 15)$

- 8) a) Solve $(D^2 + 2D + 4)y = e^{2x}$.
 - b) Solve $4x^2y'' + 4xy' y = 4x^2$.
 - c) Solve $(D^2 6D + 9)y = 3e^{-4x}$ given that e^x is a part of the complementary function.

OR

- 9) a) Solve $(D^2 5D + 6)y = e^{4x} + \sin 2x$.
 - b) Solve $\frac{dx}{dt} 7x + y = 0$, $\frac{dy}{dt} 2x 5y = 0$.
 - c) Solve $\frac{d^2y}{dx^2} + 9y = \sec 3x$ by the method of variation of parameters.

