

III Semester B.Sc. Examination, April/May 2023 (NEP Scheme) MATHEMATICS

Paper - III: Ordinary Differential Equations and Real Analysis - I

Time: 21/2 Hours

Max. Marks: 60

Instruction: Answer all questions.

PART - A

I. Answer any six of the following:

gniwollot ent to send yns news (6×2=12)

- 1) Show that $(x^2 ay)dx + (y^2 ax)dy = 0$ is exact.
- 2) Find the general solution of $y = px + \frac{a}{p}$.
- 3) Solve: $\frac{d^2y}{dx^2} 16y = 0$.
- 4) Find the particular integral of $(D^2 + 4D + 4)y = e^{2x}$.
- 5) Define a convergent sequence with an example.
- 6) Show that $\left\{\frac{1}{n}\right\}$ is a monotonically decreasing sequence.
- 7) State D'Alembert's ratio test for the series of positive terms.
- 8) Test the convergence of the series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots \infty$.

PART - B vollet ent to sent time sevena. VI

II. Answer any three of the following:

 $(3 \times 4 = 12)$

1) Verify for exactness and solve :

$$(4x + 3y + 1) dx + (3x + 2y + 1) dy = 0.$$

- 2) Solve: $y = 2px + y^2p^3$.
- 3) Solve: $y = x + p^3$.
- 4) Find the general and singular solutions of sinpx.cosy cospx.siny = p.
- 5) Find the orthogonal trajectories to the curve $r = a(1 \cos\theta)$ where 'a' is a parameter.

PART - C

III. Answer any three of the following:

onwolol em to xia yne tewa (3×4=12)

- 1) Solve: $(D^2 5D + 6)y = e^{4x} + \sin 2x$.
- 2) Solve: $x^2y'' xy' + 2y = x \log x$.
- 3) Solve xy'' (1 + x)y' + y = 0 given that, (x + 1) is a part of complementary function.
- 4) Solve: $y'' + y = \sec x$ by the method of variation of parameters.
- 5) Verify the condition for integrability and solve,

$$z^2dx + (z^2 - 2yz)dy + (2y^2 - yz - zx) dz = 0.$$

PART - D

IV. Answer any three of the following:

 $(3 \times 4 = 12)$

- 1) If $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$, then prove that $\lim_{n\to\infty} (a_n + b_n) = a + b$.
- Prove that a monotonic increasing sequence which is bounded above is convergent.
- 3) Find the limit of the sequence {0.3, 0.33, 0.333,}.

- 4) Examine the convergence of the sequence
 - i) $\{n[\log(n + 1) \log n]\}$
 - ii) $\left\{\frac{n+1}{n}\right\}$.
- 5) Show that the sequence $\{a_n\}$ defined by $a_1 = \sqrt{2}$ and $a_{n+1} = \sqrt{2a_n}$ converges to 2.

PART - E

V. Answer any three of the following:

 $(3 \times 4 = 12)$

- 1) State and prove D'Alembert's ratio test for the series of positive terms.
- 2) Test the convergence of the series:

$$1 + \frac{1}{2} + \frac{1.3}{2.4} + \frac{1.3.5}{2.4.6} + \dots$$

Discuss the convergence of the series :

$$\sum_{n=1}^{\infty} \frac{\left[\left(n+1\right)x\right]^{n}}{n^{(n+1)}}.$$

4) Test the convergence of the series

$$\sum_{n=1}^{\infty} \frac{1.2.3....n}{3.5.7....(2n+1)}.$$

5) Find the sum to infinity of the series

$$\frac{1}{6} + \frac{1.4}{6.12} + \frac{1.4.7}{6.12.18} + \dots$$