

## V Semester B.A./B.Sc. Examination, April/May 2023 (CBCS Scheme) MATHEMATICS – VI

Time: 3 Hours

Max. Marks: 70

Instruction : Answer all the questions.

PART - A depend to equal end fadi

Answer any five questions:

 $(5 \times 2 = 10)$ 

- 1. a) Write the Euler's equation when f is independent of x.
  - b) Find the differential equation in which functional  $I = \int_{x_1}^{x_2} \left[1 + xy' + x(y')^2\right] dx$  has an extremum.
  - c) Define Geodesics on surface.
  - d) Evaluate  $\int_C (5xydx + y^2dy)$  where C is the curve in the xy-plane  $y = 2x^2$  from (0, 0) to (1, 2).
  - e) Evaluate  $\int_{1}^{2} \int_{3}^{4} (xy + e^{y}) dy dx$ .
- f) Write the cylindrical polar co-ordinate in triple integral.
  - g) State Gauss Divergence Theorem.
  - h) If V is the volume of a region bounded by a closed surface S. Show that  $\iint_S \nabla r^2. \hat{n} ds = 6V \ \ \text{by using Gauss Divergence theorem}.$

PART - B

Answer any two full questions:

 $(2 \times 10 = 20)$ 

- 2. a) Derive the Euler's equation in the form  $\frac{\partial f}{\partial y} \frac{d}{dx} \left( \frac{\partial f}{\partial y'} \right) = 0$ .
  - b) Solve the variational problem  $I = \int_0^{\pi/2} \left( y^2 (y')^2 \right) dx = 0$  given y(0) = 0,  $y\left(\frac{\pi}{2}\right) = 2$ .

OR



- a) Find the function y which makes the integral  $\int_{x_1}^{x_2} (y^2 + 4(y')^2) dx = 0$  an extremum.
- b) Find the curve on which the functional  $I = \int_0^1 \left[ (y')^2 + 12xy \right] dx$  with y(0) = 0, y(1) = 1 can be extremed.
  - 4. a) Find the geodesic on a right circular cylinder.
    - b) A heavy cable hangs freely under gravity between two fixed points. Show that the shape of the cable is a catenary.

OR

- a) Show that the extremal of the functional  $\int_0^2 \sqrt{1+(y')^2} dx$  subject to the constraint  $\int_0^2 y dx = \frac{\pi}{2}$  and end conditions y(0) = 0, y(2) = 0 is a circular arc.
  - b) Show that the functional  $\int_{x_1}^{x_2} (y^2 + x^2y^1) dx$  assumes extreme values on the straight line y = x. PART - C (5xydx + xbyx3) | etsulav3 (b

Answer any 2 full questions:

- 6. a) Evaluate  $\int_C (x+2y) dx + (4-2x) dy$  around the ellipse  $\frac{x^2}{9} + \frac{y^2}{4} = 1$  in the counter clockwise.
  - b) Evaluate  $\iint_{\mathbb{R}} xy \, dx \, dy$  where R is the first quadrant of the circle  $x^2 + y^2 = a^2$  where  $x_1 y \ge 0$ .

- 7. a) Evaluate  $\int_0^a \int_0^{2\sqrt{ax}} x^2 dy dx$  by changing the order of integration.
  - b) Find the volume generated by the revolution of the cardioid  $r = a(1 + \cos\theta)$ about the initial line.
- 8. a) Evaluate  $\iint y \, dx \, dy$  where R is region bounded by the parabola  $y^2 = 4ax$ and  $x^2 = 4av$ .
  - b) Evaluate  $\int_{0}^{1} \int_{v^{2}}^{1} \int_{0}^{1-x} x \, dz \, dx \, dy$ .



- 9. a) If R is the region bounded by the planes x = 0, y = 0, z = 0, z = 1 and the cylinder  $x^2 + y^2 = 1$ . Evaluate  $\iiint_R xyz \, dx \, dy \, dz$  by changing it to cylindrical polar co-ordinates.
  - b) Find the volume of the sphere  $x^2 + y^2 + z^2 = a^2$ .

## PART - D

## Answer any 2 full questions:

 $(2 \times 10 = 20)$ 

- 10. a) State and prove Green's theorem.
  - b) Using Gauss Divergence theorem, evaluate  $\iint_S \vec{F} \cdot \hat{n} ds$  where  $\vec{F} = 2xy\hat{i} + yz^2\hat{j} + xz\hat{k}$  and S is the total surface of the rectangular parallelopiped bounded by the planes x = 0, y = 0, z = 0, x = 1, y = 2, z = 3.

OR

- 11. a) Evaluate by Stoke's theorem  $\oint_C yzdx + zxdy + xydz$  where C is the curve  $x^2 + y^2 = 1$ ,  $z = y^2$ .
  - b) Verify Green's theorem for  $\vec{F} = (x^2 y^2)\hat{i} + 2xy\hat{j}$  over the rectangular region bounded by the lines x = 0, y = 0, x = a, y = b.
- 12. a) State and prove Gauss Divergence theorem.
  - b) Using Green's theorem evaluate  $\int_C e^{-x} \sin y \, dx + e^{-x} \cos y \, dy$  where C is the rectangle with vertices  $(0, 0), (\pi, 0), (\pi, \pi/2)$  and  $(0, \pi/2)$ .

OR

- 13. a) Verify Gauss Divergence theorem for  $\vec{F} = (x^2 yz)\hat{i} + (y^2 zx)\hat{j} + (z^2 xy)\hat{k}$  over the rectangular parallelopiped  $0 \le x \le a$ ,  $0 \le y \le b$ ,  $0 \le z \le c$ .
  - b) Evaluate by stoke's theorem  $\oint_C \sin z \, dx \cos x \, dy + \sin y \, dz$  where C is the boundary of the rectangle  $0 \le x \le \pi$ ,  $0 \le y \le 1$ , z = 3.