

V Semester B.A./B.Sc. Examination, April/May 2023 (CBCS Scheme) (F+R) MATHEMATICS – V

Time: 3 Hours Max. Marks: 70

Instruction: Answer all questions.

PART - A

Answer any five questions.

 $(5 \times 2 = 10)$

- a) In a ring $(R, +, \bullet)$ prove that $a.(b-c) = a.b a.c, \forall a, b, c \in R$.
- b) Define subring of a ring. Give an example.
- c) Define homomorphism of rings.
- d) Find a unit vector normal to the surface $x^3 + y^3 + 3xyz = 3$ at (1, 2, -1).
- e) Show that the vector $\vec{F} = (x + 3y)\hat{i} + (y 3z)\hat{j} + (x 2z)\hat{k}$ is solenoidal.
 - f) Prove that $\nabla = 1 E^{-1}$.
- g) Write Lagrange's interpolation formula for unequal intervals.

h)	Evaluate	J .	$\frac{dx}{1+x}$	using Simpson's	3 th 8	rule	given
----	----------	-----	------------------	-----------------	-------------------	------	-------

X	0	0.5	1	1.5	2	2.5	3
У	1	0.667	0.5	0.4	0.333	0.286	0.25

PART - B

Answer two full questions.

 $(2 \times 10 = 20)$

- 2. a) Prove that $(z_6, +_6, \times_6)$ is a commutative ring w.r.t. $+_6$ and \times_6 as two compositions.
 - b) Prove that the intersection of any two subrings is a subring. Give an example to show that the union of two subrings of a ring need not be a subring.

- 3. a) Prove that every field is an integral domain.
 - b) Find all the principal ideals of the ring $R = \{0, 1, 2, 3, 4, 5\}$ w.r.t. $+_6$ and x_6 .
- 4. a) If $f: R \to R'$ be a homomorphism of R into R' then show that Ker f is an
 - b) State and prove fundamental theorem of homomorphism of rings.

OR

- 5. a) Prove that an ideal 5 of the ring of integers (z, +, •) is maximal if and only if 5 is generated by some prime integer.
 - b) If $f\colon R\to R'$ be a homomorphism of a ring R into ring R' then prove that i) f(0) = 0', where 0 and 0' are the zero elements of R and R' respectively.
 - ii) $f(-a) = -f(a), \forall a \in \mathbb{R}$.

c) Define homomorphism of an

Answer two full questions.

- 6. a) Find the directional derivative of $\phi(x, y, z) = x^2yz + 4xz^2$ at the point (1, -2, -1)in the direction of $2\hat{i} - \hat{j} - 2\hat{k}$.
 - b) Show that the surfaces $4x^2y + z^3 = 4$ and $5x^2 2yz = 9x$ intersect orthogonally at the point (1, -1, 2).

OR

- 7. a) If n is a non-zero constant, then show that $\nabla^2(r^n) = n(n+1)r^{n-2}$. Deduce that when $r\neq 0$, r^n is harmonic if n=-1.
 - b) Show that $\vec{F}=(6xy+z^3)\hat{i}+(3x^2-z)\hat{j}+(3xz^2-y)\hat{k}$ is irrotational. Find φ such that $\vec{F} = \nabla \phi$.
- 8. a) If φ is a scalar point function and \vec{F} is a vector point function then prove that $\operatorname{div}(\phi \vec{F}) = \phi(\operatorname{div} \vec{F}) + (\operatorname{grad} \phi).\vec{F}$.
 - b) If $\vec{F} = \nabla(2x^3y^2z^4)$ then prove that $\nabla \times \vec{F} = \vec{0}$.

- 9. a) If $\phi = xyz$ and $\vec{F} = x^2yz\hat{i} + xy^2z\hat{j} + xyz^2\hat{k}$ find $div(\phi\vec{F})$.
 - b) If the vector $\vec{F} = (ax + 3y + 4z) \hat{i} + (x 2y + 3z) \hat{j} + (3x + 2y z) \hat{k}$ is Solenoidal then find 'a'.

PART - D

Answer two full questions.

 $(2 \times 10 = 20)$

10. a) By the method of separation of symbols prove that

$$u_0 - u_1 + u_3 - u_4 + \dots = \frac{u_0}{2} - \frac{\Delta u_0}{4} + \frac{\Delta^2 u_0}{8} - \frac{\Delta^3 u_0}{16} + \dots$$

b) Estimate f(4.2) from the table

х	0	2	4	6
f(x)	2	10	66	218

OR

11. a) Find the cubic polynomial which takes the following values

Х	0	1	2	3
f(x)	1	2	1	10

- b) Obtain the function whose first difference is $3x^2 + 9x + 4$.
- 12. a) Using Lagrange's interpolation formula find f(6) from the following data

Х	3	7	9	10
f(x)	168	120	72	63

- b) Find the value of $\int_{1}^{5} \log_{10} x \, dx$ taking 8 subintervals by Trapezoidal rule.
- a) Using Newton's divided difference formula find f(18) from the following table

X	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

b) Evaluate $\int_{0}^{1} e^{x} dx$ using Simpson's $\frac{3}{8}^{th}$ rule.