

I Semester B.A./B.Sc. Examination, May/June 2022 (NEP Scheme) MATHEMATICS Algebra – I and Calculus – I

Time: 2½ Hours Max. Marks: 60

Instruction: Answer all the Parts.

PART - A

I. Answer any six of the following:

 $(6 \times 2 = 12)$

HRST 6

- 1) Define the rank of a matrix.
- 2) Find whether the system of equations has a non-trivial solution or not.

$$x + y = 0$$
; $x - y - z = 0$; $3x + y - z = 0$

- 3) Check whether limit exists or not for f(x)
- 4) State Cauchy's mean value theorem.
- 5) Give the expressions for polar sub-tangent and polar sub-normal.
- 6) Find $\frac{ds}{dx}$ for the curve $y = a \log sec(\frac{x}{a})$.
- 7) Find the Asymptotes parallel to the co-ordinate axes to the curve $x^2y^2 a^2x^2 = a^2y^2$.
- 8) Find the n^{th} derivative of $y = e^{mx}$.

PART - B

II. Answer any three of the following:

entworld ent to earth year (3×4=12)

1) Find the rank of the Matrix 'A' by reducing to row reduced Echelon form

$$A = \begin{bmatrix} 1 & 0 & 2 & -2 \\ 2 & -1 & 0 & -1 \\ 1 & 0 & 2 & -1 \\ 4 & -1 & 3 & -1 \end{bmatrix}.$$

2) Show that the following system of equations are consistent and hence solve

$$x + y + z = 1$$

$$x + 2y + 3z = 4$$

$$x + 3y + 5z = 7$$
 — Euluple 3 bns I — sideplA

$$x + 4y + 7z = 10$$

- 3) Prove that the rank of the transpose of a matrix is same as that of the original matrix.
- 4) Find the Eigen values and the Eigen vectors of the matrix $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.
- 5) Find the inverse of the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ using Cayley Hamilton theorem.

Answer any three of the following: (3×4=12) 111.

- 1) Prove that a function which is continuous in [a, b] attains its bounds atleast once in [a, b].
- 2) Verify Rolle's theorem for the function $f(x) = 8x x^2$ in [2, 6].
- 3) State and prove Lagrange's mean value theorem for continuous functions.
- 4) Expand f(x) = log(1 + sinx) upto the terms containing x^4 using Maclaurin's series.
- 5) Evaluate: $\lim_{x\to 0} \left(\frac{1}{x^2} \frac{1}{x \tan x} \right)$.

PART - D

IV. Answer any three of the following:

 $(3 \times 4 = 12)$

- 1) Show that the angle between the radius vector and the tangent to the curve is $tan \phi = r \frac{d\theta}{dr}$.
- 2) Show that the curves $r^m = a^m \cos(m\theta)$ and $r^m = a^m \sin(m\theta)$ intersect orthogonally.

- 3) Find the Pedal equation of the curve $r = a (1 \cos\theta)$.
- 4) Find the radius of curvature of the curve $y = a \cosh\left(\frac{x}{a}\right)$.
- 5) Find the center of curvature for the curve $y^2 = 4ax$ at (a, a).

PART - E

V. Answer any three of the following:

 $(3 \times 4 = 12)$

- 1) Find the nth derivative of the function $y = \frac{(2x-1)}{(x-2)(x+1)}$.
- State and prove Leibnitz theorem to find the nth derivative of product of two functions.
- 3) If $y = \tan^{-1}x$, then show that $(1 + x^2)y_{n+1} + 2nxy_n + n(n-1)y_{n-1} = 0$.
- 4) Determine the position and nature of the double points of the curve $x^3 + 2x^2 + 2xy y^2 + 5x 2y = 0$.
- 5) Trace the curve Astroid $x^{2/3} + y^{2/3} = a^{2/3}$, (a > 0).