No. of Printed Pages: 3

GS-303

VI Semester B.Sc. Examination, May/June 2019

PHYSICS-VII

ATOMIC PHYSICS, NUCLEAR PHYSICS AND MATERIAL SCIENCE

(CBCS 2016-17 & Onwards/NS-Repeaters 2013-14 & Onwards)

Time: 3 Hours Max. Marks: 70

Instructions: Answer five questions from each part.

PART - A

Answer any five of the following questions. Each question carries eight marks:

- 1. (a) What is fine structure? Explain.
 - (b) Describe Stern-Gerlach experiment with relevant theory.
- 2. (a) State Paulis exclusion principle. 2+3+3
 - (b) Obtain an expression for the frequency of larmar's precession with respect to Vector atom model.
 - (c) Obtain an expression for the maximum number of electrons that can be filled in a shell.
- 3. (a) Explain vibrational rotational spectra of diatomic molecule. Prove 6+2 that spacing between the spectral lines $\Delta \gamma = \frac{h}{2\pi I}$.
 - (b) Distinguish between Rayleigh Scattering and Raman Scattering.
- **4.** Assuming the relation between impact parameter and angle of scattering derive Rutherford's scattering formula.
- Describe the construction and working of a Geiger-Muller Counter and explain the features of its characteristic curve.
- (a) Distinguish between endoergic and exoergic nuclear reactions. 2+6(b) Describe with theory working of a cyclotron and mention its
 - (b) Describe with theory working of a cyclotron and mention its limitations.

2+6

- 7. (a) What are nano-materials? Write a note on quantum structures of 6+2 nanotechnology.
 - (b) Mention any two applications of nano-materials.
- **8.** (a) Describe the various kinds of polarization when a dielectric material **6+2** is placed in an electric field.
- (b) Write expression for electronic and orientational polarizabilities.

PART - B

Answer any five problems. Each problem carries four marks:

5x4=20

- 2. Calculate the value of Bohr Magneton using $h = 6.625 \times 10^{-34}$ Js $e = 1.6 \times 10^{-19}$ C and $m_e = 9.1 \times 10^{-31}$ kg.
- **10.** The Zeeman components of a 500 nm spectral lines are 0.0116 nm apart. When magnetic field is 1 T, find the specific charge of an electron.
- 11. With an exciting radiation of wavelength 602.24 nm a substance gave a Raman line of wavelength 620.2 nm. Calculate the frequency and the wavelength of the corresponding antistokes line.
- Calculate the kinetic energy of the α -particles emitted by the decay of $_{86} \mathrm{Rn^{222} Given}$ mass of $_{86} \mathrm{Rn^{223}} = 222.017531$ amu, mass of polonium nucleus = 218.008930 amu and mass of α particle = 4.002603 amu.
- 13. Calculate the Q value of reaction $_{29}\text{Cu}^{63}$ (P.n) $_{30}\text{Zn}^{63}$ Given mass of Cu = 62.93 amu mass of Proton = 1.0078, amu mass of Neutron = 1.0087 amu and mass of Zn = 63.93 amu. Whether it is endothermic or exothermic reaction?
- 14. Thorium 228 emits alpha particle of energy 5.42 MeV. Calculate alpha disintegration energy.

- 15. A solid elemental dielectric with density 3×10^{28} atoms/m³ shows an electric polorizability of 10^{-10} Fm². Assuming the internal electric field to be a Lorentz field, calculate the dielectric constant of the material.
- **16.** Calculate the radius of the atom. If its electric polorizability is $1.85 \times 10^{-41} \text{ Fm}^2$. Given $\epsilon_0 = 8.85 \times 10^{-12} \text{ Fm}^{-1}$.

PART - C

Answer any five of the following questions. Each question carries two marks:

- 17. (a) Can the principal quantum number take zero in the hydrogen atom? Explain.
 - (b) Write the possible values of quantum number ml for 1=3.
 - (c) Why are IR photographs more clear than photographs taken using visible light.
 - (d) The Rutheford's Scattering formula fails to agree with the data at very small scattering angles. Give reasons.
 - (e) What is the significance of negative sign of Q?
 - (f) Can a nuclear reaction take place for any energy of the projectile? Explain.
 - (g) What is meant by dielectric breakdown? Explain.
 - (h) Can Nematic liquid crystals be made conductors? Explain.