61223

Second Semester B.A./B.Sc. Degree Examination, May/June 2019

(CBCS – Freshers + Repeaters – 2014-15 and onwards)

Mathematics

Paper II - MATHEMATICS - II

Time: 3 Hours] [Max. Marks: 70]

Instructions to Candidates : Answer all Parts.

PART - A

1. Answer any **FIVE** questions :

 $(5 \times 2 = 10)$

- (a) On the set z, * is defined by a * b = a + b 1, $\forall a, b \in z$. Find the identity element.
- (b) If in a group G, $(ab)^2 = a^2b^2 \,\forall a, b \in G$, then prove that G is abelian.
- (c) Find ϕ for the curve $r = a e^{\theta \cot \alpha}$.
- (d) With usual notation prove that $P = r \sin \phi$
- (e) Find the polar subtangent for the curve $r = a(1 \cos \theta)$.
- (f) Find $\frac{ds}{dx}$ for the curve $ay^2 = x^3$.
- (g) Verify the exactness of the equation $(e^y + 1)\cos x dx + e^y \sin x dy = 0$.
- (h) Find the general solution for the equation $y = px + \log p$.

PART – B

Answer **ONE** full question :

 $(1 \times 15 = 15)$

- If Q^+ is the set of all positive rationals, prove that $(Q^+, *)$ is an abelian 2. group where * is defined by $a * b = \frac{2ab}{3}$.
 - Prove that the fourth roots of unity form an abelian group under (b) multiplication.
 - Prove that a non-empty subset H of a group (G, *) is a subgroup of G if and only if

$$a * b^{-1} \in H, \forall a, b \in H$$

Or

- 3. (a) Prove that the inverse of an element in a group is unique.
 - Prove that $H = \{0, 2, 4\}$ is a subgroup of a group $G = \{0, 1, 2, 3, 4, 5\}$ under addition modulo 6.
 - Find: (c)

 - (ii) $g \circ f$, for the set $A = \{1, 2, 3\}$ where $f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ and $g = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$.

PART - C

Answer any TWO full questions:

 $(2 \times 15 = 30)$

- With usual notations, prove that $\tan \phi = r \frac{d\theta}{dr}$ for the polar curve, $r = f(\theta)$. 4. (a)
 - Show that the curves (b) $r^n = a^n \cos n\theta$, $r^n = b^n \sin n\theta$ intersect orthogonally.
 - Find the radius of curvature of the curve $XY = C^2$. (c)

61223

- 5. (a) Derive the formula for Radius of curvature in Cartesian form.
 - (b) Find the angle of intersection of the curves $r = a(1 \cos \theta)$, $r = 2a \cos \theta$.
 - (c) Find the envelope of the family of lines $\frac{x}{a} + \frac{y}{b} = 1$, where a and b are connected by the relation $ab = c^2$.
- 6. (a) Find all the asymptotes of the curve $x^3 + 2x^2y + xy^2 x^2 xy + 2 = 0$.
 - (b) Find the position and nature of the double points of the curve $x^3 + 2x^2 + 2xy y^2 + 5x 2y = 0$
 - (c) Find the area bounded by the Ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Or

- 7. (a) Find the pedal equation of the curve $y^2 = 4a(x+a)$.
 - (b) Find the perimeter of the cardioid $r = a(1 + \cos \theta)$.
 - (c) Find the volume of the solid generated by revolving the asteroid $x^{2/3} + y^{2/3} = a^{2/3}$ about the x axis.

PART – D

Answer any **ONE** full question :

8. (a) Solve: $\frac{dy}{dx} + y \tan x = \sin 2x$.

(c) Find the general and singular solution of (y - px)(p-1) = p.

Or

61223

9. (a) Solve:
$$\frac{dy}{dx} + \frac{1}{(1+x^2)}y = \frac{e^{\tan^{-1}x}}{(1+x^2)}$$
.

- (b) Find the general and singular solution of $y = 3px + 6y^2p^2$ (Hint: put $y^3 = V$)
 - (c) Show that the family of curve $\frac{x^2}{\lambda} + \frac{y^2}{\lambda + 1} = 1 \text{ is self orthogonal.}$

by re-ofting the asteroid

 $(1 \times 15 = 15)$

rvature alla