Second Semester B.A./B.Sc. Degree Examination, May/June 2019

(CBCS - Freshers + Repeaters - 2014-15 and onwards)

Mathematics

Paper II - MATHEMATICS - II

Time : 3 Hours]
[Max. Marks : 70
Instructions to Candidates : Answer all Parts.
PART - A

1. Answer any FIVE questions :
(a) On the set $z,{ }^{*}$ is defined by $a * b=a+b-1, \forall a, b \in z$. Find the identity element.
(b) If in a group $G,(a b)^{2}=a^{2} b^{2} \forall a, b \in G$, then prove that G is abelian.
(c) Find ϕ for the curve $r=a e^{\theta \cot \alpha}$.
(d) With usual notation prove that $P=r \sin \phi$

(e) Find the polar subtangent for the curve $r=a(1-\cos \theta)$.
(f) Find $\frac{d s}{d x}$ for the curve $a y^{2}=x^{3}$.
(g) Verify the exactness of the equation $\left(e^{y}+1\right) \cos x d x+e^{y} \sin x d y=0$.
(h) Find the general solution for the equation $y=p x+\log p$.

61223

PART - B

Answer ONE full question :
2. (a) If Q^{+}is the set of all positive rationals, prove that $\left(Q^{+}, *\right)$ is an abelian group where * is defined by $a * b=\frac{2 a b}{3}$.
(b) Prove that the fourth roots of unity form an abelian group under multiplication.
(c) Prove that a non-empty subset H of a group ($G,{ }^{*}$) is a subgroup of G if and only if
$a * b^{-1} \in H, \forall a, b \in H$
Or
3. (a) Prove that the inverse of an element in a group is unique.
(b) Prove that $H=\{0,2,4\}$ is a subgroup of a group $G=\{0,1,2,3,4,5\}$ under addition modulo 6 .
(c) Find:
(i) $f \circ g$
(ii) $g \circ f$, for the set $A=\{1,2,3\}$ where $f=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right)$ and $g=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right)$.
PART - C

Answer any TwO full questions :
4. (a) With usual notations, prove that $\tan \phi=r \frac{d \theta}{d r}$ for the polar curve, $r=f(\theta)$.
(b) Show that the curves
$r^{n}=a^{n} \cos n \theta, r^{n}=b^{n} \sin n \theta$ intersect orthogonally.
(c) Find the radius of curvature of the curve $X Y=C^{2}$.

61223

5. (a) Derive the formula for Radius of curvature in Cartesian form.
(b) Find the angle of intersection of the curves $r=a(1-\cos \theta), r=2 a \cos \theta$.
(c) Find the envelope of the family of lines $\frac{x}{a}+\frac{y}{b}=1$, where a and b are connected by the relation $a b=c^{2}$.
6. (a) Find all the asymptotes of the curve $x^{3}+2 x^{2} y+x y^{2}-x^{2}-x y+2=0$.
(b) Find the position and nature of the double points of the curve

$$
x^{3}+2 x^{2}+2 x y-y^{2}+5 x-2 y=0
$$

(c) Find the area bounded by the Ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

Or
7. (a) Find the pedal equation of the curve $y^{2}=4 a(x+a)$.
(b) Find the perimeter of the cardioid $r=a(1+\cos \theta)$.
(c) Find the volume of the solid generated by revolving the asteroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ about the x-axis.

Answer any ONE full question :
8. (a) Solve : $\frac{d y}{d x}+y \tan x=\sin 2 x$.

(b) Verify for exactness and solve $\left(x^{3}-4 x y-2 y^{2}\right) d x+\left(y^{3}-4 x y-2 x^{2}\right) d y=0$
(c) Find the general and singular solution of
$(y-p x)(p-1)=p$.

61223

9. (a) Solve : $\frac{d y}{d x}+\frac{1}{\left(1+x^{2}\right)} y=\frac{e^{\tan ^{-1} x}}{\left(1+x^{2}\right)}$.
(b) Find the general and singular solution of $y=3 p x+6 y^{2} p^{2}$
(Hint : put $y^{3}=V$)
(c) Show that the family of curve

$$
\frac{x^{2}}{\lambda}+\frac{y^{2}}{\lambda+1}=1 \text { is self orthogonal. }
$$

