61227

Second Semester B.Sc. Degree Examination, May/June 2019

(CBCS Scheme)

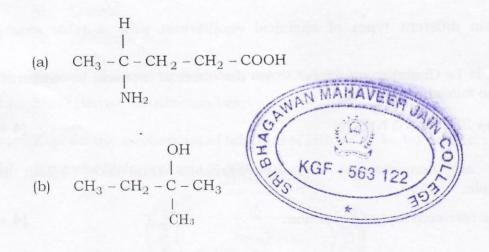
BIOCHEMISTRY

Paper II

Time : 3 Hours]

[Max. Marks: 70

Instructions to Candidates :


- 1) The Question Paper has two Parts. Part A and Part B.
- 2) Answer any eight questions from Part A and any nine questions from Part B.

PART – A

Answer any **EIGHT** of the following. Each question carries 2 marks :

 $(8 \times 2 = 16)$

- 1. What is Miller indices?
- 2. What are ideal solutions? Give an example.
- 3. What are reversible reactions? Give suitable example.
- 4. What is meant by energy of activation?
- 5. Give the IUPAC name for the following compounds :

1/3

61227

- 6. What is peroxide effect?
- 7. Give any two limitations of Baeyer's strain theory.
- 8. Write the structure of :
 - (a) Naphthalene
 - (b) Diphenyl
- 9. What are organometallic compounds?
- 10. Give any two uses of Glycol.
- 11. Why are phenols more acidic than aliphatic alcohols?
- 12. What is aldol condensation?

PART – B

Answer any **NINE** questions of the following. Each question carries **6** marks : (9 × 6 = 54)

- 13. (a) Name any six types of crystal system in solids. Give example.
 - (b) Write Braag's equation. Mention the terms involved in it. (4 + 2)
- 14. (a) Draw the phase diagram of KI- H₂O system and explain.
 - (b) Explain the terms :
 - (i) Degrees of freedom
 - (ii) Phase

15. (a) Explain different types of chemical equilibrium with suitable example.

(b) What is Le Chatelier principle? Write the effect of increase in temperature for the following reaction :

 $N_2(g) + 3H_2(g) \boxtimes 2 NH_3(g)$ (4 + 2)

- 16. (a) What are homogeneous and heterogeneous catalysis? Explain with example.
 - (b) Define rate constant of a reaction.

HAG 3

(4 + 2)

(4 + 2)

17.	(a)	Derive the expression for velocity constant of second order reaction.	
	(b)	Define half life period. (4	+ + 2)
18.	(a)	What is meant by the term inductive effect? Mention the types example.	with
	(b)	Arrange the following carbocations in the order of decreasing stab-	ility :
		(i) CH_3^+	
		(ii) $(CH_3)_2^+CH$.	
		(iii) $(CH_3)_3^+C$ (4	+ + 2)
19.	(a)	Explain the reactivity and relative stabilities of cycloalkanes.	
	(b)	What are axial and equatorial bonds? (4	+ 2)
20.	(a)	Explain the mechanism of nitration of Benzene.	
	(b)	What is the role of $AlCl_3$ in Friedal Craft's reaction? (4)	+ + 2)
21.	(a)	Give the differences between S_N1 and S_N2 reactions.	
	(b)	Write the preparation of Grignard reagent.	+ + 2)
22.	(a)	How do you distinguish between 1°, 2° and 3° alcohols base oxidation?	d on
	(b)	What is Eutectic point? (4	+ 2)
23.	(a)	Write the mechanism of Kolbe's reaction.	
	(b)	Write the structure of :	
		(i) Quinol	
		(ii) Salicyclic acid (4	+ 2)
24.	(a)	Explain Claisen condensation reaction with mechanism.	
	(b)	State Nernst distribution law. (4	+ 2)
25.	(a)	Explain the mechanism of addition of HBr to 1, 3 - butadiene.	
	(b)	Write the biological role of ATP (4	+ 2)