V Semester B.A./B.Sc. Examination, November/December 2018 (CBCS) (2016-17 and Onwards) (Semester Scheme)
(Fresh + Repeaters)
MATHEMATICS - VI
Time: 3 Hours
Max. Marks : 70
Instruction : Answer all questions.
PART - A

1. Answer any five questions.
a) Write Euler's equation when f is independent of y.
b) Find the differential equation of the functional $I=\int_{X_{1}}^{x_{2}}\left[y^{2}-\left(y^{\prime}\right)^{2}+2 y e^{x}\right] d x$.
c) Write the Euler's equation.
d) Evaluate $\int_{c}(3 x+y) d x+(2 y-x) d y$ along $y=x$ from $(0,0)$ to $(10,10)$.
e) Evaluate $\int_{0}^{\pi / 2} \int_{0}^{a \cos \theta} r^{2} d r d \theta$.
f) Evaluate $\int_{0}^{12} \int_{0}^{2} x y z d x d y d z$.

g) Find the area of the circle $x^{2}+y^{2}=a^{2}$ by double integration.
h) State Stoke's theorem.
PART - B

Answer two full questions.
$(2 \times 10=20)$
2. a) Find the extremal of the functional $I=\int_{0}^{\pi / 2}\left[y^{2}-\left(y^{\prime}\right)^{2}-2 y \sin x\right] d x$ under the end conditions $y(0)=y(\pi / 2)=0$.
b) Define Geodesic. Prove that geodesic on a plane is a straight line. OR
3. a) If a cable hangs freely under gravity from two fixed points then show that the shape of cable is a catenary.
b) Solve the variational problem $\delta \int_{0}^{\pi / 2}\left[y^{2}-\left(y^{\prime}\right)^{2}\right] d x=0$ under the condition

$$
y(0)=0, y(\pi / 2)=2
$$

4. a) Prove that catenary is the curve which when rotated about a line generates a surface of minimum area.
b) Find the extremal of the functional $\int_{x_{1}}^{x_{2}}\left[12 x y+\left(y^{\prime}\right)^{2}\right] d x$.
5. a) Find the extremal of the functional $\int_{0}^{1}\left[x+y+\left(y^{\prime}\right)^{2}\right] d x=0$ under the conditions
$y(0)=1$ and $y(1)=2$.
b) Find the extremal of the functional $\int_{0}^{1}\left[\left(y^{\prime}\right)^{2}+x^{2}\right] d x$ subject to the constraint $\int_{0}^{1} y d x=2$ and having end conditions $y(0)=0$ and $y(1)=1$.
PART - C

Answer two full questions.
6. a) Evaluate $\int_{C}(x+y+z) d$ where C is line joining the points $(1,2,3)$ and

$$
(4,5,6) \text { whose equations are } x=3 t+1, y=3 t+2 ; z=3 t+3
$$

b) Evaluate $\iint_{R} x y(x+y) d x d y$ over the region R bounded between the parabola $y=x^{2}$ and the line $y=x$.

OR
7. a) Change the order of integration in $\int_{0}^{a 2 \sqrt{a x}} \int_{0}^{2} x^{2} d x d y$ and hence evaluate .
b) Evaluate $\iint_{A} \sqrt{4 x^{2}-y^{2}} d x d y$ where A is the area bounded by the lines $y=0$,

$$
y=x \text { and } x=1
$$

8. a) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} x y z d x d y d z$.
b) Change into polar coordinates and evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$. OR
9. a) Find the volume of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ using triple integration.
b) Evaluate $\iiint x y z d x d y d z$ over the positive octant of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ by changing it to spherical polar coordinates.
PART - D

Answer two full questions.
10. a) State and prove Green's theorem.
b) Using divergence theorem, evaluate $\iint_{S}\left(x \hat{i}+y \hat{j}+z^{2} \hat{k}\right)$. $\hat{n} d$ s where S is the closed surface bounded by the cone $x^{2}+y^{2}=z^{2}$ and the plane $z=1$.

OR
11. a) By using divergence theorem, evaluate $\iint_{S} \vec{F} . \hat{n} d s$ where $\vec{F}=4 x \hat{i}-2 y^{2} \hat{j}+z^{2} \hat{k}$ and S is the surface enclosing the region for which $x^{2}+y^{2} \leq 4$ and $0 \leq z \leq 3$.
b) Evaluate \iint curl $\vec{F} \cdot \hat{n}$ ds by Stoke's theorem if $\vec{F}=(y-z+2) \hat{i}+(y z+4) \hat{j}-x z \hat{k}$ and S is the surface of the cube $0 \leq x \leq 2,0 \leq y \leq 2,0 \leq z \leq 2$.
12. a) Using Green's theorem evaluate for the scalar line integral of $\vec{F}=\left(x^{2}-y^{2}\right) \hat{i}+2 x y \hat{j}$ over the rectangular region bounded by the lines $x=0, y=0 ; x=a ; y=b$.

b) Using the divergence theorem evaluate $\iint_{\mathrm{S}} \mathrm{F}$.n̂ds where $\vec{F}=\left(x^{2}-y z\right) \hat{i}+\left(y^{2}-z x\right) \hat{j}+\left(z^{2}-x y\right) \hat{k}$ over the rectangular parallelopiped $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$. OR
13. a) Using Green's theorem evaluate $\int_{C}\left(x y+y^{2}\right) d x+x^{2} d y$ where C is the closed curve bounded by $y=x$ and $y=x^{2}$.
b) Evaluate by Stoke's theorem $\oint_{C} y z d x+z x d y+x y d z$. where C is the curve $x^{2}+y^{2}=1 ; z=y^{2}$.

