V Semester B.A./B.Sc. Examination, Nov./Dec. 2018 (Semester Scheme)
 (Fresh + Repeaters) (CBCS) (2016-17 and Onwards) Mathematics
 MATHEMATICS - V

Time: 3 Hours
Max. Marks : 70
Instruction : Answer all questions.
PART - A

1. Answer any five questions :
a) In a ring $(R,+, \cdot)$, show that $a \cdot(-b)=(-a) \cdot b=-(a \cdot b) \forall a, b, \in R$.
b) Define subring of a ring and give an example.
c) Show that the set of even integers is an ideal of the ring of integers.
d) Find the unit normal vector to the surface $(x-1)^{2}+y^{2}+(z+2)^{2}=9$ at ($3,1,-4$).
e) If $\phi=2 x^{3} y^{2} z^{4}$, then find $\nabla \phi$.
f) Write the Newton's divided difference interpolation formula.
g) Evaluate $\Delta^{10}(1-a x)\left(1-b x^{2}\right)\left(1-c x^{3}\right)\left(1-d x^{4}\right)$.
h) State the Trapezoidal rule for the integral $\int_{a}^{b} f(x) d x$
PART - B

Answer two full questions.
2. a) Prove that the intersection of any two subrings is a subring. Give an example to show that the union of two subrings of a ring need not be a subring.
b) Prove that $\left(z_{5}, t_{5}, x_{5}\right)$ is a ring w.r.t. $+_{5}$ and x_{5}.
OR
3. a) Prove that every field is an integral domain.
b) Show that the set of all real numbers of the form $a+b \sqrt{2}$, where a and b are integers is a ring w.r.to addition and multiplication.
4. a) If $f: R \rightarrow R^{\prime}$ be a homomorphism and onto then prove that f is one-one iff. $\operatorname{Ker} f=\{0\}$.
b) Prove that the set $S=\left\{\left(\begin{array}{ll}a & 0 \\ b & 0\end{array}\right) / a, b \in z\right\}$ of all 2×2 matrices is a left ideal of the ring R over Z. Also show that S is not a right ideal.

OR

5. a) State and prove fundamental theorem of homomorphism of rings.
b) Find all the principal ideals of the ring $R=\{0,1,2,3,4,5,6,7\}$ w.r.to $+_{8}$ and \times_{8}.
PART - C

Answer two full questions :
6. a) Find the directional derivative of $\phi(x, y, z)=x^{2}-y^{2}+4 z^{2}$ at the point $(1,1,-8)$ in the direction of $2 \hat{i}+\hat{j}-\hat{k}$.
b) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $x^{2}+y^{2}-z=3$ at the point $(2,-1,2)$.

OR
7. a) Prove that $\nabla^{2} r^{n}=n(n+1) r^{n-2}$, where n is a non-zero constant. Also deduce that r^{n} is harmonic if $n=-1$.
b) If the vector $\vec{F}=(a x+3 y+4 z) \hat{i}+(x-2 y+3 z) \hat{j}+(3 x+2 y-z) \hat{k}$ is solenoidal, then find a .
8. a) If ϕ is a scalar point function and \vec{F} is a vector point function. Then prove that $\operatorname{div}(\phi \dot{F})=\phi(\operatorname{div} \dot{F})+\nabla \phi \cdot \vec{F}$.
b) Show that $\vec{F}=\left(6 x y+z^{3}\right) \hat{i}+\left(3 x^{2}-z\right) \hat{j}+\left(3 x z^{2}-y\right) \hat{k}$ is irrotational. Find ϕ such that $\vec{F}=\nabla \phi$.
9. a) Prove that :
i) Curl \vec{F} is solenoidal.
ii) Grad ϕ is irrotational.

b) Prove that $\nabla^{2} f(r)=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$ where $r^{2}=x^{2}+y^{2}+z^{2}$.

PART - D

Answer two full questions.

10. a) By the separation of symbols, prove that

$$
u_{0}+\frac{u_{1}}{1!}+\frac{u_{2} x^{2}}{2!}+\ldots \infty=e^{x}\left[u_{0}+\frac{x \Delta u_{0}}{1!}+\frac{x^{2} \Delta^{2} u_{0}}{2!}+\ldots \infty\right]
$$

b) Obtain the function whose first difference is $6 x^{2}+10 x+11$.
OR
11. a) From the following data find ' θ ' at $x=84$ using difference table.

x	40	50	60	70	80	90
θ	184	204	226	250	276	304

b) Express $3 x^{3}-4 x^{2}+3 x-11$ in factorial notation. Also express its successive differences in factorial notation.
12. a) Prepare divided difference table for the following data.

x	1	3	4	6	10
$f(x)$	0	18	58	190	920

b) Evaluate $\int_{0}^{6} \frac{1}{1+x^{2}} d x$, by using Simpson's $3 / 8$ rule.
OR
13. a) By using Lagrange interpolation formula find $f(10)$ from the following data.

x	5	6	9	11
$f(x)$	12	13	14	16

b) Evaluate $\int_{0}^{0.6} \mathrm{e}^{x^{2}} \mathrm{dx}$ by taking 6 sub intervals, by using Simpson's $1 / 3$ rule.

