61123

First Semester B.A./B.Sc. Degree Examinations, December 2018
(CBCS Scheme - Freshers)

MATHEMATICS

Paper I

Time : 3 Hours]
[Max. Marks : 70
Instructions to Candidates : Answer all Parts.
PART - A

1. Answer any FIVE questions :
(a) Find the eigen values of the matrix $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$.
(b) Find the value of λ for which the following system has a nontrivial solution :

$$
\begin{array}{r}
2 x-y+2 z=0 \\
3 x+y-z=0 \\
\lambda x-2 y+z=0
\end{array}
$$

(c) Find the nth derivative of $\log 3 x$.
(d) If $u=x^{3}+x^{2} y+x y^{2}+y^{3}$ find $\frac{\partial^{2} u}{\partial x^{2}}$.
(e) Evaluate $\int_{0}^{\pi / 2} \sin ^{7} x d x$.
(f) Evaluate $\int_{0}^{\pi / 2} \sin ^{5} x \cdot \cos ^{2} x d x$.
(g) Find the angle between the line $\frac{x+1}{3}=\frac{x-5}{3}=\frac{z+5}{6}$ and the plane $2 x+3 y+5 z+6=0$.
(h) Find the centre and radius of the sphere $x^{2}+y^{2}+z^{2}-4 x+6 y-8 z-16=0$.

61123

PART - B

Answer ONE full question :

2. (a) Find the rank of the matrix $A=\left[\begin{array}{llll}1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5\end{array}\right]$ by reducing to row reduced echelon form.
(b) Verify the system of equations $x+2 y+2 z=1,2 x+y+z=2,3 x+2 y+2 z=3, y+z=0$ for consistency and hence solve.
(c) Verify Cayley-Hamilton theorem for $A=\left[\begin{array}{ll}5 & 4 \\ 3 & 2\end{array}\right]$.

> Or
3. (a) Find the rank of $A=\left[\begin{array}{cccc}1 & 1 & 1 & 2 \\ 2 & 1 & -3 & 6 \\ 3 & -3 & 1 & 2\end{array}\right]$ by reducing to normal form.
(b) For what values of λ and μ the following system of equations $x+y+z=6, x+2 y+3 z=10, x+2 y+\mu z=\lambda$ have (i) unique solution (ii) an infinite number of solutions (iii) no solution.
(c) Find the eigen values and eigen vectors of $A=\left[\begin{array}{cc}4 & 1 \\ -1 & 2\end{array}\right]$.

PART - C

Answer TWO full questions :
4. (a) Find the nth derivative of $e^{a x} \sin (b x+c)$.
(b) Find the nth derivative of $\frac{1}{6 x^{2}-5 x+1}$.
(c) If $x=\sin t$ and $y=\sin p t$ show that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}-p^{2}\right) y_{n}=0$.

Or

61123

5. (a) State and prove Leibnitz's theorem for nth derivative of product of two functions.
(b) If $z=\sin (a x+y)+\cos (a x-y)$, show that $\frac{\partial^{2} z}{\partial x^{2}}=a^{2} \frac{\partial^{2} z}{\partial y^{2}}$.
(c) If $u=x^{2}-2 y$ and $v=x+y$ find $\frac{\partial(u, v)}{\partial(x, y)}$.
6. (a) Find the reduction formula for $\int \cos ^{n} x d x$ and evaluate $\int_{0}^{\pi / 2} \cos ^{n} x d x$.
(b) Evaluate $\int_{0}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{4}}$.
(c) Evaluate $\int_{0}^{1} \frac{x^{a}-1}{\log x} d x, \alpha>-1$ is a parameter.

> Or
7. (a) Find the reduction formula for $\int \tan ^{n} x$ and evaluate $\int_{0}^{\pi / 4} \tan ^{n} x d x$.
(b) Evaluate $\int_{0}^{a} \frac{x^{3}\left(a^{3}-x^{3}\right)}{\sqrt{a^{2}-x^{2}}} d x$.
(c) Evaluate $\int_{0}^{\pi} x \sin ^{4} x \cdot \cos ^{2} x d x$.

PART - D

Answer ONE full question :

8. (a) Find the equation of the plane coaxial with the planes $6 x+4 y-5 z-2=0$ and $x-2 y+3 z=0$ and parallel with direction ratios $(1,3,2)$.
(b) Verify the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ for coplanarity.
(c) Find the equation of the sphere which passes through the points $(3,0,0)$, $(0,-1,0),(0,0,-2)$ and having its centre on the plane $3 x+2 y+4 z-1=0$.

Or

61123

9. (a) Find the equation of the plane bisecting the angle between the planes $7 x+4 y+4 z+3=0$ and $2 x+y+2 z+2=0$.
(b) Find the shortest distance between the lines $\frac{x+3}{-4}=\frac{y-6}{3}=\frac{z}{2}$ and $\frac{x+2}{-4}=\frac{y}{1}=\frac{z-7}{1}$.
(c) Find the equation of the right circular cylinder of radius 2 whose axis passes through $(1,2,3)$ and has direction cosines proportional to $(2,-3,6)$.
