III Semester B.A./B.Sc. Examination, November/December 2018 (Semester Scheme) (CBCS) (F + R) (2015-16 and Onwards)

MATHEMATICS - III Mathematics

Max. Marks : 70

Time : 3 Hours

Instruction : Answer all questions.
PART - A

Answer any five questions:

1. a) Find the number of generators of the cyclic group of order 60.
b) Find all the left cosets of $\mathrm{H}=\{0,4,8\}$ in $\left(Z_{12},+_{12}\right)$.
c) Test the nature of the sequence $\{n[\log (n+1)-\log n]\}$.
d) Examine the convergence of the series $\sum \sin \left(\frac{1}{n}\right)$.
e) Test the convergence of the series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+$ \qquad
f) Find the value of ' C ' using Rolle's theorem for the function $f(x)=8 x-x^{2}$ in [2, 6].
g) State Lagrange's mean value theorem.
h) Evaluate $\lim _{x \rightarrow 0}(\operatorname{cosec} x-\cot x)$.

Answer one full question :

$(1 \times 15=15)$
2. a) In a group G, prove that $\mathrm{O}(\mathrm{a})=\mathrm{O}\left(\mathrm{a}^{-1}\right) \forall \mathrm{a} \in \mathrm{G}$.
b) Find the number of generators of the cyclic group of order 8 . If ' a ' is one of the generator, then what are the other generators ?
c) State and prove Euler's theorem.

OR

3. a) Any two right (left) cosets of a subgroup H of a group G are either disjoint or identical.
b) Define cyclic group. Show that every cyclic group is abelian.
c) If G is a finite group and H is a subgroup of G, then the order of H divides the order of G.
PART - C

Answer two full questions:

4. a) If $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$, then prove that $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=a+b$.
b) Prove that a monotonically increasing sequence which is bounded above is convergent.
c) Examine the convergence of the sequence
i) $\left\{\left(1+\frac{2}{n}\right)^{n}\right\}$
ii) $\{\sqrt{n+1}-\sqrt{n}\}$

OR
5. a) Prove that the sequence $\left\{\frac{3 n+4}{2 n+1}\right\}$ is
i) Monotonically decreasing
ii) Bounded
iii) Converges to $\frac{3}{2}$.
b) Show that the sequence $\left\{a_{n}\right\}$ where $a_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\ldots \ldots .+\frac{1}{n+n}$ is convergent.
c) Find limit of the sequence $0.4,0.44,0.444, \ldots \ldots \ldots$.
6. a) State and prove D'Alembert's ratio test for the series of positive terms.
b) Examine the convergence of the series $\frac{x^{2}}{2 \sqrt{1}}+\frac{x^{3}}{3 \sqrt{2}}+\frac{x^{4}}{4 \sqrt{3}}+\ldots$
c) Sum the series to infinity $\frac{1}{6}+\frac{1.4}{6.12}+\frac{1.4 .7}{6 \cdot 12.18}+$

OR
7. a) State and prove Leibnitz test on Alternating Series.
b) Examine the convergence of the series $\sum\left(\frac{n x}{n+1}\right)^{n}$.
c) Sum to infinity of the series $\frac{2^{2}}{1!}+\frac{3^{2}}{2!}+\frac{4^{2}}{3!}+\frac{5^{2}}{4!}+\ldots \ldots$.

||||||||||||||||||||||||||||||

PART - D

Answer one full question :
8. a) Discuss the continuity of

$$
f(x)=\left\{\begin{array}{ll}
1+x & \text { for } x<2 \\
5-x & \text { for } x \geq 2
\end{array} \text { at } x=2 .\right.
$$

b) State and prove Rolle's theorem.
c) Evaluate :
i) $\lim _{x \rightarrow 0}\left(\frac{a^{x}-b^{x}}{x}\right)$
ii) $\lim _{x \rightarrow 0}(1+\sin x)^{\cot x}$

OR
9. a) Examine the differentiability of the function $f(x)$ defined by

$$
f(x)=\left\{\begin{array}{ll}
x^{2}-1 & \text { for } x \geq 1 \\
1-x & \text { for } x<1
\end{array} \text { at } x=1 .\right.
$$

b) State and prove Cauchy's mean value theorem.
c) Expand $\tan x$ up to the term containing x^{3} by using Maclaurin's expansion.

