65123

First Semester B.C.A. Degree Examination, December 2018

Paper III - DISCRETE MATHEMATICS

Time : 3 Hours]
[Max. Marks : 100

Instructions to Candidates: Answer all Sections.

SECTION - A

I. Answer any TEN of the following :

1. If $A=\{3,6,9,12,15,18,21\}, \quad B=\{3,8,9,12,18\}, C=\{2,4,6,9,15\}$, find (a) $A-B$ (b) $C-B$.
2. If $A=\left\{x / x^{2}-6 x+8=0\right\}$ and $B=\{2,3\}$ find $A \times B$.
3. Define Conjunction.
4. Define diagonal matrix with an example.
5. If $A=\left[\begin{array}{ll}2 & -1 \\ 3 & -1\end{array}\right]$ find inverse of A.
6. Show that $\log \left(\frac{81}{16}\right)-\log \left(\frac{8}{9}\right)+\log \left(\frac{128}{243}\right)=\log 3$.
7. Find value of n if ${ }^{n} P_{2}=12$.
8. State Cayley Hamilton theorem.
9. Find the slope of the line $2 x-3 y+5=0$.
10. Find $\vec{a} \cdot \vec{b}$ if $\vec{a}=\bar{i}+2 \bar{j} ; \vec{b}=2 \bar{i}-3 \bar{j}$.

65123

11. Find the identity element in set of rational numbers except 1 w.r.t. * which is defined by $a * b=a+b-a b$.
12. Find Unit vector in direction of $\bar{a}+\bar{b}$ if $\bar{a}=(1,1,-1)$ and $\bar{b}=(1,-1,3)$.

> SECTION - B
II. Answer any SIX of the following :
13. If $U=\{1,2,3,4,5,6,7,8,9,10\}, A=\{1,3,5,7,9\}$ and $B=\{1,2,4,7,8\}$ verify $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$.
14. Show that the function $f: R \rightarrow R$ defined by $f(x)=4 x-5$ is both one-one and onto.
15. Write converse, inverse and contrapositive of the conditional "If two integers are equal and their squares are equal".
16. Show that $p \rightarrow(q \wedge r) \equiv(p \rightarrow q) \wedge(p \rightarrow r)$.
17. Determine whether $(p \vee q) \wedge(\sim p \wedge \sim q)$ is Tautology (or) Contradiction (or) Neither.
18. Find Eigen values and Eigen vectors of Matrix $A=\left(\begin{array}{ll}1 & 2 \\ 5 & 4\end{array}\right)$.
19. Using Cramer's Rule solve $x-y+2 z=3,2 x+z=1 ; 3 x+2 y+z=4$.
20. Solve by using Matrix method $2 x-3 y=1$ and $3 x-y=3$.
SECTION - C
III. Answer any SIX of the following :
21. If $\log (a+b)=\frac{1}{2} \log (3 a b)$ show that $a^{2}+b^{2}=a b$.
22. If ${ }^{(2 n+1)} P_{n-1}:{ }^{(2 n-1)} P_{n}=3: 5$. Find n.
23. A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee has (a) exactly 3 girls (b) atleast 3 girls.

65123

24. Prove that the set $G=\{2,4,6,8\}$ is an abelian group w.r.t. multiplication modulo 10 .
25. Show that a group G is abelian if and only if $(a b)^{2}=a^{2} b^{2} \forall a, b \in G$.
26. Show that the points whose position vectors are $2 \bar{i}-\bar{j}+\bar{k} ; \quad \bar{i}-3 \bar{j}-5 \bar{k}$ and $3 \bar{i}-4 \bar{j}-4 \bar{k}$ form a right angled triangle.
27. Using Vector Method find the area of triangle whose vertices are $A(1,3,2)$, $B(2,-1,1)$ and $C(-1,2,3)$.
28. Show that points $A(2,3,-1), B(1,-2,3), C(3,4,-2)$ and $D(1,-6,6)$ are coplanar.

SECTION - D

IV. Answer any FOUR of the following :
29. Find the coordinates of the point which divide the line joining pair of points $(8,9)$ and $(-7,4)$ internally in the ratio $2: 3$.
30. Show that the points $(2,-2),(8,4),(5,7)$ and $(-1,1)$ are the vertices of a rectangle.
31. Find equation of the Locus of point which moves such that the sum of its distance from $(0,2)$ and $(0,-2)$ is 6 .
32. Find point of intersection of the straight line $3 x+4 y+1=0$ and $2 x-y-3=0$. Hence find the position of the point w.r.t. the given lines.
33. Find equation of the line passing through $(3,-2)$ and inclined at an angle of 60° with the line $\sqrt{3} x+y=1$.
34. Find value of K for which the lines $2 x-K y+1=0$ and $x+(K+1) y-1=0$ are perpendicular.

