SA - 686

Max. Marks: 70 (F)

II Semester B.A./B.Sc. Examination, April/May 2015 (2014-15 and Onwards) (CBCS) (Fresh) COMPUTER SCIENCE – II Data Structures

Time: 3 Hours

Instruction : Answer all Sections.

SECTION - A

- I. Answer any ten questions. Each question carries 2 marks: (2×10=20)
 - 1) Define data structure. Mention its types.
 - 2) Define time complexity and space complexity.
 - 3) Write a program to find the length of a string without using inbuilt function.
 - 4) Write one advantage and one disadvantage of an array.
 - 5) Mention the difference between static and dynamic memory allocation.
 - 6) Write any 2 difference between linear search and binary search.
 - 7) Write one advantage and one disadvantage of linked list.
 - 8) What is dequeue ? Mention two types of dequeue.
 - 9) Write any two applications of stack.
 - 10) Write any two applications of linked lists.
 - 11) Define the following terms :
 - a) Directed graph
 - b) Weighted graph.
 - 12) Define complete binary tree and strictly binary tree.

SE	CT	ION	-B
----	----	-----	----

II. An	swer the following. Each question carries 10 marks :	(5×10=50)
13)	a) Explain memory representation of arrays.	6
	b) Explain various data structure operations performed on non-primit data structures.	tive 4
	OR	
	c) Explain towers of hanoi problem.	5
	d) Write a program to copy one string into another string.	5

P.T.O.

SA - 68	86	
,	a) Write an algorithm to delete an element from a given array. b) Write an algorithm to implement binary search. OR	5 5
0 70 (F)	 c) Write an algorithm for selection sort and trace the algorithm for the following elements: 15, 6, 13, 22, 3, 52, 2. 	10
	a) Write an algorithm to insert a node in to the linked list. b) Compare singly linked list and doubly linked list with an example. OR	5 5
	c) Explain circular linked list with an example. d) Write an algorithm to implement bubble sort.	5
t	 a) Write a program to demonstrate the working of stack using an array. b) Explain the algorithm for evaluation of postfix expression. OR 	5
	c) Write a program to implement queue using array. d) Explain the operations performed on circular queue.	5 5
17) a	 a) Write recursive algorithm for pre-order, in-order and post-order trave of a tree. 	rsals 7
t	b) Write the pre-order, in-order and post-order traversals for the given b tree.	V (01 3
	B Adding between 0 is	

è)

0

P

L

c) Explain depth first search algorithm with an example.

P

d) Explain the representation of graph in memory.

Ē

P

E

OR

X

5 5