

NS - 288

(CBCS/NS, 2013-2014 and Onwards) (F & R) PHYSICS – VI		
Astrophysics, Solid State Physics and Semi-conductor Physics		
Time :	3 Hours Max. Mark	ks : 70
Instruction : Answer five questions from each Part, 563		
	PART-A US AND	
Answer any five of the following questions. Each question carries eight marks. (5×8=40)		
1. a)	Write a note on Yerke's luminosity classification of stars.	
b)	Obtain an expression for core pressure of a star on the basis of Linear densi model.	ty (3+5)
2. a)	What is Chandrashekar's mass limit ?	
b)	Write a note on H – R diagram, White dwarfs and black holes.	(2+6)
3. a)	What are X – rays ?	
b)	State and explain Moseley's law, Mention its applications.	(2+6)
4. a)	State Wiedemann – Franz Iaw.	
b)	Derive an expression for electrical conductivity of a metal based on free electron theory.	(2+6)
5. a)	What is Hall effect in metals ?	
b)	Explain any three experimental facts about superconductivity.	(2+6)
 Obtain an expression for electron concentration in conduction band of Intrinsic semiconductor. 		
7. a)	Distinguish between Conductors, Semiconductors and Insulators on the bas of band theory of solids.	sis
b)	Write a note on LED and Solar cell.	(3+5)

V Semester B.Sc. Examination, November/December 2016

P.T.O.

8. a) Explain h-parameters with the help of two port Linear network.

b) Derive an expression for current gain in a CE amplifier in terms of h-parameters.

(4+4)

PART-B

Solve any five of the following problems. Each problem carries four marks. (5×4=20)

- 9. The apparent magnitudes of the stars Sirius and the Regulus are 1.44 and + 1.36 respectively on magnitude scale of stars. Calculate the relative brightness of the star Sirius with respect to Regulus.
- 10. As per linear density model of a star, calculate gravitational potential energy of a star. Given $R = 7 \times 10^8$ m, $M = 3 \times 10^{30}$ Kg and $G = 6.673 \times 10^{-11}$ Nm² Kg⁻².
- 11. Calculate the radius of a neutron star whose mass is $2 M_{\odot}$.
- 12. In a crystal, a plane cuts intercepts of 3a, 2b and 6c along the three crystallographic axes. Determine the Miller Indices of the plane.
- 13. Calculate the fermi energy of Lithium. Given density of Lithium is 534 Kg m⁻³ and atomic weight is 6.931 amu (Given 1 amu = 1.667×10^{-27} Kg).
- 14. Monochromatic X rays of wavelength 0.15 Å undergo Compton effect from a carbon block. Calculate the wavelength of scattered rays through 45°.
- 15. Mobilities of electrons and holes in a sample of intrinsic germanium at 300 K are $0.36 \text{ m}^2 \text{ v}^{-1} \text{ s}^{-1}$ and $0.17 \text{ m}^2 \text{ v}^{-1} \text{ s}^{-1}$ respectively. If the resistivity of the specimen is $2.12 \Omega \text{m}$. Calculate the carrier concentration in intrinsic semiconductor.
- 16. A certain regulator has a no-load output voltage of 20v and has a full-load output of 19V. What is the load regulation expressed as a percentage ?

PART-C

-3-

Answer any five of the following questions. Each question carries two marks. (5×2=10)

17. a) Is there any mass limit for black holes ? Explain.

- b) How do white dwarfs attain stability ? Explain of . 553 122
- c) Is there any unmodified line in Compton scattering ? Explain.
- d) Hall coefficient is negative for metals. Why?
- e) Does characteristic spectrum of X rays depend on the applied voltage ? Explain.
- f) An intrinsic semiconductor behaves like a perfect insulator at 0K. Explain.
- g) Are there any holes in n type semiconductor ? Explain.
- h) Why is β more than α of a transistor.